Computational Fluid Dynamics as a Tool in the Development Process of Left Ventricular Assist Devices

Marco Zuin, Gianluca Rigatelli, Claudio Picariello, Giuseppe Faggian, Loris Roncon


Computational fluid dynamic analysis (CFD) have recently been applied in study the of cardiovascular system. Since the development of the first blood pumps in the early 1990’s this mathematical technique has been adopted in determining pressure-flow relationship and efficiencies before building left ventricular (LV) assist devices (LVADs) prototypes. Improvements in the functionality of these devices are desirable and for this aim CFD could be a valid tool both in projection and development.

Full Text:



Morris PD, Narracott A, von Tengg-Kobligk H, Silva Soto DA, Hsiao S, Lungu A, Evans P, Bressloff NW, Lawford PV, Hose DR, Gunn JP. Computational fluid dynamics modelling in cardiovascular medicine Heart. 2016 Jan 1;102(1):18-28. doi: 10.1136/heartjnl-2015-308044

Zuin M, Rigatelli G, Faggian G, Roncon L. Mathematics and Cardiovascular Interventions: Role of the Finite Element Modeling in Clinical Decision Making JACC Cardiovasc Interv. 2016; 9:507-8. doi: 10.1016/j.jcin.2015.12.274.

Zuin M, Rigatelli G, Roncon L. Mathematics and transcatheter aortic valve implantation: Use of computational fluid dynamics and finite element analysis. Is this the future? Int J Cardiol. 2016; 207:31-2. doi: 10.1016/j.ijcard.2016.01.138.

Sukumar R, Athavale MM, Makhijani VB, Przekwas AJ. Application of computational fluid dynamics techniques to blood pumps. Artif Organs. 1996 Jun;20(6):529-33. (no doi).

Cohen DG1, Thomas JD1, Freed BH1, Rich JD1, Sauer AJ2Echocardiography and Continuous-Flow Left Ventricular Assist Devices: Evidence and Limitations JACC Heart Fail. 2015; 3:554-64. doi: 10.1016/j.jchf.2015.03.003

Song X, Throckmorton AL, Wood HG, Allaire PE, Olsen DB. Transient and quasi-steady computational fluid dynamics study of a left ventricular assist device. ASAIO J. 2004; 50:410-7. doi: 10.1097/01.MAT.0000136507.57707.0F

Burgreen GW, Loree HM 2nd, Bourque K, Dague C, Poirier VL, Farrar D, Hampton E, Wu ZJ, Gempp TM, Schöb R. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device. Artif Organs. 2004;28:874-80. doi: 10.1111/j.1525-1594.2004.07384.x

Anderson JB1, Wood HG, Allaire PE, Bearnson G, Khanwilkar P. Computational flow study of the continuous flow ventricular assist device, prototype number 3 blood pump. Artif Organs. 2000 May;24(5):377-85. DOI: 10.1046/j.1525-1594.2000.06442.x

Kailasan A1, Untaroiu A, Pravin S, Wood HG. Assessment of thermal dissipation effects in a ventricular assist device - biomed 2013. Biomed Sci Instrum. 2013;49:124-33 (no doi).

Okamoto E, Hashimoto T, Mitamura Y. Design of a miniature implantable left ventricular assist device using CAD/CAM technology. J Artif Organs. 2003;6:162-7. doi 10.1007/s10047-003-0223-y

Callington A, Long Q, Mohite P, Simon A, Mittal TK.

Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design. J Thorac Cardiovasc Surg. 150 (2015) 696-704. doi: 10.1016/j.jtcvs.2015.05.034.

Karmonik C, Partovi S, Loebe M, Schmack B, et al. Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach. ASAIO J. 58 (2012) 562-7. doi: 10.1097/MAT.0b013e31826d6232

Shewan L.G., Coats A.J.S., Henein M. Requirements for Ethical Publishing in Biomedical Journals. International Cardiovascular Forum Journal. 2015;2:2.



  • There are currently no refbacks.

Copyright (c) 2016 Marco Zuin, Gianluca Rigatelli, Claudio Picariello, Giuseppe Faggian, Loris Roncon

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2518-6140 (on-line version)